groupoid associated to a smooth manifold

نویسندگان

h‎. ‎ abbasi

g‎. ‎a‎. ‎haghighatdoost

چکیده

‎in this paper‎, ‎we introduce the structure of a groupoid associated to a vector field‎ ‎on a smooth manifold‎. ‎we show that in the case of the $1$-dimensional manifolds‎, ‎our‎ ‎groupoid has a‎ ‎smooth structure such that makes it into a lie groupoid‎. ‎using this approach‎, ‎we associated to‎ ‎every vector field an equivalence‎ ‎relation on the lie algebra of all vector fields on the smooth manifolds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GROUPOID ASSOCIATED TO A SMOOTH MANIFOLD

‎In this paper‎, ‎we introduce the structure of a groupoid associated to a vector field‎ ‎on a smooth manifold‎. ‎We show that in the case of the $1$-dimensional manifolds‎, ‎our‎ ‎groupoid has a‎ ‎smooth structure such that makes it into a Lie groupoid‎. ‎Using this approach‎, ‎we associated to‎ ‎every vector field an equivalence‎ ‎relation on the Lie algebra of all vector fields on the smooth...

متن کامل

The fundamental Gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module

We define the thin fundamental Gray 3-groupoid S3(M) of a smooth manifold M and define (by using differential geometric data) 3-dimensional holonomies, to be smooth strict Gray 3-groupoid maps S3(M) → C(H), where H is a 2-crossed module of Lie groups and C(H) is the Gray 3groupoid naturally constructed from H. As an application, we define Wilson 3-sphere observables.

متن کامل

A Groupoid Approach to Quantization

Many interesting C∗-algebras can be viewed as quantizations of Poisson manifolds. I propose that a Poisson manifold may be quantized by a twisted polarized convolution C∗-algebra of a symplectic groupoid. Toward this end, I define polarizations for Lie groupoids and sketch the construction of this algebra. A large number of examples show that this idea unifies previous geometric constructions, ...

متن کامل

Generalized functions valued in a smooth manifold

Based on Colombeau’s theory of algebras of generalized functions we introduce the concepts of generalized functions taking values in differentiable manifolds as well as of generalized vector bundle homomorphisms. We study their basic properties, in particular with respect to some new point value concepts for generalized functions and indicate applications of the resulting theory in general rela...

متن کامل

Parallelism Structure on a Smooth Manifold

Using the theory of extensors developed in a previous paper we present a theory of the parallelism structure on arbitrary smooth manifold. Two kinds of Cartan connection operators are introduced and both appear in intrinsic versions (i.e., frame independent) of the first and second Cartan structure equations. Also, the concept of deformed parallelism structures and relative parallelism structur...

متن کامل

The Lie Algebra of a Smooth Manifold

It is well known that certain topological spaces are determined by rings of continuous real functions defined over them [l; 2; 3],1 and for differentiable manifolds the functions may be differen tiable [4; 7]. In this note we prove that the Lie algebra of all tangent vector fields with compact supports on an infinitely differentiable manifold determines the manifold, and that two such manifolds...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
caspian journal of mathematical sciences

ناشر: university of mazandaran

ISSN 1735-0611

دوره 3

شماره 2 2014

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023